Passive & Active Electromagnetic Frequency Selective Surfaces for High-Power Beam Applications

Sandia National Laboratories Jacques H. Loui

Problem

The physics of electromagnetic scattering from complex metal/dielectric surfaces/volumes have not been completely explored and understood. It is important to study anomalous, extraordinary and double-negative transmission in order to develop useful engineering applications.

Approach

Theory: Understand the physics of EM scattering from compound periodic thick-metal surfaces.

Numerical: Develop numerical tools necessary to support theoretical and experimental work.

Experimental: Devise measurement systems to characterize novel materials and scattering processes.

Application: Produce novel, reconfigurable, metal/dielectric surfaces/volumes for adaptive control over EM scattering.

Variation of unit-cell geometry

Controls Freq.& Angle Dependence

Variation of unit-cell filling

Addresses Tunability

EM/RF Applications: Radome/Filters, Flat Lens, and Tunable Meta-Surfaces

Results

Tapered Perforations Improve Angle/BW Response

- Phase criterion determines resonance location
- |∆_{F,R}| determines Q of the resonance and is dependent on the diameter/period ratio: larger diameter/period leads to broadband response

Results (cont.)

Extra Geometry Degrees of Freedom Causes Anomalous Transmission

Developed In-House Numerical Tools

Created RF Gaussian Beam Measurement System

Toward Tunable Ferrite-based Active Frequency Selective Surfaces

Significance

- **■** This work satisfies the strategic intent of the Truman fellowship.
- [multiple orgs., 3 universities, 2 graduate students, 6+ publications (one in physical review, 2 journal (in progress), 3 conference), 4 TAs,
 1 additional LDRD for SAR, and supported the efforts of GC-LDRD in meta-materials]
- Provided Sandia a firm footing (tools & infrastructure) in the areas of sub-wavelength EM scattering and RF ferrite-based innovations.
 Multi-morphic surfaces open new venues for low-observables and benefit both Strategic Partnership and Defense Systems and Assessment
- Multi-morphic surfaces open new venues for low-observables and benefit both Strategic Partnership and Defense Systems and Assessment Investment Areas.

